jeudi 7 mars 2013

'Goody Bag' Filled With Sample Processing Supplies Arrives on Station














ISS - International Space Station patch / SpaceX - Commercial Resupply Serves SpX-2 patch.

March 7, 2013

A SpaceX Dragon spacecraft has delivered a "goody bag" to the crew aboard the International Space Station. But it's not filled with treats. This goody bag -- called the Wet Lab Kit -- is loaded with supplies to make it easier for crews to collect and process various types of samples in orbit, increasing scientific research and analysis more than ever before.

Launched on the second Commercial Resupply Mission March 1, this kit is part of the Wetlab 1 project. Wetlab 1 consists of the Wet Lab Kit, developed by NASA's Johnson Space Center in Houston, and a Plate Reader, developed by NanoRacks of Houston. Both items are funded by the International Space Station National Laboratory Office.


Image above: Frequently used tools and supplies are packed into the Wet Lab Kit, a soft goods bag that measures 19.5 inches by 16.75 inches by 9.5 inches when full. The kit, a part of Wetlab 1, is available for those who have experiments onboard the International Space Station. (NASA).

"With the arrival of Wetlab 1 to station, we are accelerating support for the research community's sample processing needs," said Bert Magh, project manager of Wetlab 1 at Johnson. "We think of it like a supply pantry for experiments. The Wet Lab Kit enhances the capabilities of the space station as a U.S. National Laboratory by providing frequently used supplies needed to complete the work there. Some investigators will benefit from being able to get analysis quicker rather than waiting for samples to return to Earth."

The kit is a 19.5-inch-by-16.75-inch-by-9.5-inch soft goods bag filled with flight-certified experiment tools and supplies. Contents include syringes, needles, absorbent pads, gloves, tape, labels, scissors, tubes, forceps, wipes, gauze, cable ties, bubble wrap and vials, among other things. These supplies allow a broad range of samples -- such as blood, urine, saliva, tissues, plants and specimens -- to be processed in orbit. Subsequent launches will resupply items in the kit as needed.


Image above: A Biological Research in Canisters experiment package with five Petri dish fixation units (PDFU) installed. The PDFUs each contain a Petri dish with the biological sample to be flown in space. (NASA).

The kit also contains a custom Disposable Glove Bag, which is an unpressurized enclosure that keeps liquids and particles from escaping into the station's cabin. It is made of clear Teflon and has two integral inward-protruding gloves. The seams are heat-sealed, and the gloves are attached with Teflon-coated fiberglass cloth tape. The bag inflates to become 16 inches tall, 25 inches deep and 34 inches wide. The bag then can be attached to a collapsible frame. Small, half-inch Velcro coins are inside the glove bag to hold experiment materials in place.

"In the past, crew members had to process their samples in the Microgravity Science Glovebox (MSG), which is needed for experiments that require stricter containment controls," Magh explained. "Now the crew won't have to interrupt MSG experiments. Instead, they can easily unfold the glove bag, perform their experiment and then deflate and trash it when completed."


Image above: The NanoRacks Plate Reader allows for in-orbit microbiological analysis, increasing life science and biological research. (NASA).

Should a spill occur, cleaning wipes are used inside the bag to clean and absorb any liquids before deflating the bag. To do this cleanup, the crew member uses the station's wet/dry vacuum through the bag's filter to prevent the release of any remaining particles or droplets.

Wetlab 2 is in the development stage and is targeted for launch in 2014. This project will provide hardware that will allow in-orbit gene expression analysis. The instrument will be capable of taking a sample grown in orbit, extracting the ribonucleic acid and setting up reactions that read and record real-time gene expression information. That information will be transmitted to Earth.


Image above: NASA astronaut Nicole Stott working on the Cell Biology Experiment Facility (CBEF) SPACE SEED experiment in the Kibo JEM Pressurized Module (JPM) during Expedition 21. The Wet Lab Kit will make it easier for sample collection like this aboard the International Space Station. (NASA).

Also for use alongside the Web Lab Kit is the NanoRacks Plate Reader, which was launched to the station July 27, 2012, aboard the Japanese H-II Transfer Vehicle-3 resupply spacecraft. This instrument allows for in-orbit microbiological analysis, increasing life science and biological research on the station.

"Because of Wetlab 1, station users don't have to send their own supplies," said Magh. "The Wet Lab Kit is ready for them to use now. It is prepared for our customers with the tools and supplies they request from our Wet Lab Kit catalog for processing their experiment samples. The Plate Reader makes it possible to instantly analyze samples and send the data to scientists on Earth."


Image above: This cutaway view of an artist's rendering of the International Space Station shows a very busy crew inside and outside the orbital lab. The station's current six-person crew size. (NASA).

Not having to certify the equipment provided in the Wet Lab Kit for spaceflight may save time and money for future researchers. Investigators interested in flying their experiments on the orbiting laboratory can visit the Opportunities for International Space Station Research website: http://www.nasa.gov/mission_pages/station/research/ops/index.html

For more information about International Space Station (ISS), visit: http://www.nasa.gov/mission_pages/station/main/index.html

Images (mentioned), Text, Credit: NASA's Marshall Space Flight Center / Jessica Eagan.

Cheers, Orbiter.ch