mercredi 18 avril 2018

Lab Tests and Life Science as Station Orbits Higher Today

ISS - Expedition 55 Mission patch.

April 18, 2018

A docked Russian cargo craft automatically fired its engines this morning boosting the International Space Station’s altitude a little higher. During the rest of the day, the Expedition 55 crew supported life science and swapped out station hardware.

Russia’s Progress 69 resupply ship docked to the Zvezda service module fired its thrusters boosting the station’s orbit today. The two-minute, six-second burn establishes the correct orbit when three crew members undock and land in June and a two-orbit rendezvous capability for the Progress 70P resupply craft when it launches in July.

Image above: Mexico, Baja California and the southern coast of the state of California are pictured as the International Space Station orbited above the Pacific Ocean. Image Credit: NASA.

NASA crewmates Scott Tingle, Ricky Arnold and Drew Feustel became lab assistants today as they collected and stowed their own blood, urine and saliva samples in a science freezer. Two long-running human research experiments, Biochemical Profile and Repository, are basing their results on the analysis of these samples helping scientists understand how microgravity impacts the human body.

Tingle later tested the Miniature Exercise Device-2 for providing a range of motion and resistance exercise while taking up less space aboard the station. Feustel installed new firewall gear in the Harmony module before replacing manifold bottles in the Combustion Integrated Rack. Arnold worked with commercial science hardware then processed samples for a protein crystal growth student experiment.

Image above: Flying over North Pacific Ocean, seen by EarthCam on ISS, speed: 27'611 Km/h, altitude: 409,52 Km, image captured by Roland Berga (on Earth in Switzerland) from International Space Station (ISS) using ISS-HD Live application with EarthCam's from ISS on April 19, 2018 at 01:33 UTC.

Mice are being observed on the orbital lab today to understand the physiological signals that lead to muscle and bone loss in space. Norishige Kanai from the Japan Aerospace Exploration Agency collected blood samples from the mice to be processed, analyzed and stowed in a science freezer. Scientists are studying the effectiveness of a drug therapy to prevent those stresses and signals that cause weakened bones and muscles.

Related links:

Biochemical Profile:


Miniature Exercise Device-2:

Student experiment:

Expedition 55:

Space Station Research and Technology:

International Space Station (ISS):

Images, Text, Credits: NASA/Mark Garcia/ Aerospace/Roland Berga.

Best regards,

NASA Planet Hunter on Its Way to Orbit

SpaceX - TESS Mission patch.

April 18, 2018

Image above: NASA’s next planet-hunter, the Transiting Exoplanet Survey Satellite (TESS), successfully launched on a SpaceX Falcon 9 on April 18, 2018. TESS will search for new worlds outside our solar system for further study. Image Credit: NASA Television.

NASA’s Transiting Exoplanet Survey Satellite (TESS) launched on the first-of-its-kind mission to find worlds beyond our solar system, including some that could support life.

TESS, which is expected to find thousands of new exoplanets orbiting nearby stars, lifted off at 6:51 p.m. EDT Wednesday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. At 7:53 p.m., the twin solar arrays that will power the spacecraft successfully deployed.

SpaceX Falcon 9 launches TESS - Falcon 9 first stage landing

“We are thrilled TESS is on its way to help us discover worlds we have yet to imagine, worlds that could possibly be habitable, or harbor life,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate in Washington. “With missions like the James Webb Space Telescope to help us study the details of these planets, we are ever the closer to discovering whether we are alone in the universe.”

Over the course of several weeks, TESS will use six thruster burns to travel in a series of progressively elongated orbits to reach the Moon, which will provide a gravitational assist so that TESS can transfer into its 13.7-day final science orbit around Earth. After approximately 60 days of check-out and instrument testing, the spacecraft will begin its work.

NASA TESS deployment

“One critical piece for the science return of TESS is the high data rate associated with its orbit,” said George Ricker, TESS principal investigator at the Massachusetts Institute of Technology’s (MIT) Kavli Institute for Astrophysics and Space Research in Cambridge. “Each time the spacecraft passes close to Earth, it will transmit full-frame images taken with the cameras. That’s one of the unique things TESS brings that was not possible before.”

For this two-year survey mission, scientists divided the sky into 26 sectors. TESS will use four unique wide-field cameras to map 13 sectors encompassing the southern sky during its first year of observations and 13 sectors of the northern sky during the second year, altogether covering 85 percent of the sky.

Image above: Illustration of the Transiting Exoplanet Survey Satellite (TESS) in front of a lava planet orbiting its host star. TESS will identify thousands of potential new planets for further study and observation. Image Credits: NASA/GSFC.

TESS will be watching for phenomena called transits. A transit occurs when a planet passes in front of its star from the observer’s perspective, causing a periodic and regular dip in the star’s brightness. More than 78 percent of the approximately 3,700 confirmed exoplanets have been found using transits.

NASA’s Kepler spacecraft found more than 2,600 exoplanets, most orbiting faint stars between 300 and 3,000 light-years from Earth, using this same method of watching for transits. TESS will focus on stars between 30 and 300 light-years away and 30 to 100 times brighter than Kepler’s targets.

The brightness of these target stars will allow researchers to use spectroscopy, the study of the absorption and emission of light, to determine a planet’s mass, density and atmospheric composition. Water, and other key molecules, in its atmosphere can give us hints about a planets’ capacity to harbor life.

“The targets TESS finds are going to be fantastic subjects for research for decades to come,” said Stephen Rinehart, TESS project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’s the beginning of a new era of exoplanet research.”

NASA’s New Planet Hunter: TESS

Video above: This video provides an overview of the TESS mission, which will monitor bright, nearby stars for evidence of orbiting planets. Video Credits: NASA GSFC.

Through the TESS Guest Investigator Program, the worldwide scientific community will be able to conduct research beyond TESS’s core mission in areas ranging from exoplanet characterization to stellar astrophysics, distant galaxies and solar system science.

TESS is a NASA Astrophysics Explorer mission led and operated by MIT and managed by Goddard. George Ricker, of MIT’s Kavli Institute for Astrophysics and Space Research, serves as principal investigator for the mission. TESS’s four wide-field cameras were developed by MIT’s Lincoln Laboratory. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics, and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission.

Related links:

NASA’s Kepler:

TESS Guest Investigator Program:

NASA Astrophysics Explorer:

TESS (Transiting Exoplanet Survey Satellite):

Images (mentioned), Videos, Text, Credits: SpaceX/NASA/Felicia Chou/Karen Northon/Goddard Space Flight Center/Claire Saravia/Kennedy Space Center/Joshua Finch/SciNews.


Proton-M launches Blagovest military communications satellite


April 18, 2018

Illustration image of Proton-M rocket launch (Amazon-5)

Russia’s Proton-M rocket made its first flight in six months Thursday, on track to deploy a Blagovest military communications satellite. Launch occurred from the Baikonur Cosmodrome in Kazakhstan at 04:12 local time (22:12 UTC on Wednesday), ahead of over nine hours of flight to deployment of its passenger.

Thursday’s launch is carrying the Blagovest No.12L satellite, the second spacecraft in a new series of communications satellites for Russia’s Ministry of Defence. After launch the satellite is likely to be renamed Kosmos 2526 under the designation scheme that Russia uses for its military spacecraft. Few details about the spacecraft have been made public.

Blagovest – meaning Good News – is a project that has been funded by the Russian military. Each satellite carries a payload of Ka and Q-band transponders. Although the satellites are being launched for the Ministry of Defence, they are reportedly equipped for telephony, broadcasting and internet services – which will support a dual-use mission with commercial service as well as linking Russia’s military bases.

Blagovest satellite

The Blagovest spacecraft are built by ISS Reshetnev – the successor to the Soviet-era NPO PM design bureau that was headed by Mikhail Reshetnev. Blagovest is based around the Ekspress 2000 bus that has previously been used for the civilian Ekspress-AM5 and AM6 and Yamal 401 satellites. Once in orbit the satellite will deploy a pair of solar arrays to generate power. It is expected to remain in service for fifteen years.

The Blagovest constellation is expected to consist of at least four satellites in geostationary orbit. It will include spacecraft at longitudes of 45 and 128 degrees East – Kosmos 2520 operates at 45 degrees East.

Thursday’s launch of Blagovest No.12L follows the successful deployment of Blagovest No.11L, the first satellite in the series, last August. Now known as Kosmos 2520, Blagovest No.11L was deployed by a Proton-M rocket with a Briz-M upper stage flying out of Site 81/24 at the Baikonur Cosmodrome. Blagovest No.12L is riding to orbit aboard the same type of rocket, flying from the same launch pad.

Images, Text,Credits: ROSCOSMOS/NASA Graham/Günter Space Page.


Where is the Universe’s missing matter?

ESA - XMM-Newton Mission patch.

18 April 2018

Astronomers using ESA’s XMM-Newton space observatory have probed the gas-filled haloes around galaxies in a quest to find ‘missing’ matter thought to reside there, but have come up empty-handed – so where is it?

All the matter in the Universe exists in the form of ‘normal’ matter or the notoriously elusive and invisible dark matter, with the latter around six times more prolific.

Curiously, scientists studying nearby galaxies in recent years have found them to contain three times less normal matter than expected, with our own Milky Way Galaxy containing less than half the expected amount.

“This has long been a mystery, and scientists have spent a lot of effort searching for this missing matter,” says Jiangtao Li of the University of Michigan, USA, and lead author of a new paper.

Searching galactic haloes for ‘missing’ matter

“Why is it not in galaxies — or is it there, but we are just not seeing it? If it’s not there, where is it? It is important we solve this puzzle, as it is one of the most uncertain parts of our models of both the early Universe and of how galaxies form.”

Rather than lying within the main bulk of the galaxy, the part can be observed optically, researchers thought it may instead lie within a region of hot gas that stretches further out into space to form a galaxy’s halo.

These hot, spherical haloes have been detected before, but the region is so faint that it is difficult to observe in detail – its X-ray emission can become lost and indistinguishable from background radiation. Often, scientists observe a small distance into this region and extrapolate their findings but this can result in unclear and varying results.

Jiangtao and colleagues wanted to measure the hot gas out to larger distances using ESA’s XMM-Newton X-ray space observatory. They looked at six similar spiral galaxies and combined the data to create one galaxy with their average properties.

“By doing this, the galaxy’s signal becomes stronger and the X-ray background becomes better behaved,” adds co-author Joel Bregman, also of the University of Michigan.

“We were then able to see the X-ray emission to about three times further out than if observing a single galaxy, which made our extrapolation more accurate and reliable.”

Massive and isolated spiral galaxies offer the best chance to search for missing matter. They are massive enough to heat gas to temperatures of millions of degrees so that they emit X-rays, and have largely avoided being contaminated by other material through star formation or interactions with other galaxies.

Still missing

The team’s results showed that the halo surrounding galaxies like the ones observed cannot contain all of the missing matter after all. Despite extrapolating out to almost 30 times the radius of the Milky Way, nearly three-quarters of the expected material was still missing.

There are two main alternative theories as to where it could be: either it is stored in another gas phase that is poorly observed – perhaps either a hotter and more tenuous phase or a cooler and denser one – or within a patch of space that is not covered by our current observations or emits X-rays too faintly to be detected.

Either way, since the galaxies do not contain enough missing matter they may have ejected it out into space, perhaps driven by injections of energy from exploding stars or by supermassive black holes.

ESA's XMM-Newton x-ray observatory

“This work is important to help create more realistic galaxy models, and in turn help us better understand how our own Galaxy formed and evolved,” says Norbert Schartel, ESA XMM-Newton project scientist. “This kind of finding is simply not possible without the incredible sensitivity of XMM-Newton.”

“In the future, scientists can add even more galaxies to our study samples and use XMM-Newton in collaboration with other high-energy observatories, such as ESA’s upcoming Advanced Telescope for High-ENergy Astrophysics, Athena, to probe the extended, low-density parts of a galaxy’s outer edges, as we continue to unravel the mystery of the Universe’s missing matter.”

Notes for editors:

“Baryon budget of the hot circumgalactic medium of massive spiral galaxies,” by J-T Li et al. (2018) is published in The Astrophysical Journal Letters. DOI: 10.3847/2041-8213/aab2af.

Related links:

The Astrophysical Journal Letters:

More information about ESA's XMM-Newton mission can be found here:

XMM-Newton overview:

XMM-Newton image gallery:

XMM-Newton in-depth:

Images, Text, Credits: ESA/Norbert Schartel/University of Michigan/Joel Bregman/Jiangtao Li/ESA/XMM-Newton; J-T. Li (University of Michigan, USA); Sloan Digital Sky Survey (SDSS).


mardi 17 avril 2018

Station Set to Orbit Higher as Crew Performs Biomedical Tests

ISS - Expedition 55 Mission patch.

April 17, 2018

The International Space Station is set to raise its orbit Wednesday ahead of upcoming cargo and crew missions. Meanwhile, the six Expedition 55 crew members are staying busy today with medical tests, cargo work and lab maintenance.

Image above: Expedition 55 Flight Engineer Drew Feustel of NASA is inside the Japanese Kibo laboratory module talking to dignitaries on Earth, including university officials, musicians and scientists, during an educational event that took place at Queen’s University in Kingston, Ontario. Image Credit: NASA.

The space station will increase its altitude slightly when a docked Russian cargo craft automatically fires its engines for two minutes and six seconds early Wednesday. The maneuver will establish the correct orbit for the landing of three crew members in June and a two-orbit rendezvous capability for the next Russian Progress resupply craft in July.

Flight Engineer Scott Tingle collected and stowed his own urine sample today for a pair of biomedical studies examining the effects of spaceflight on the human body. The U.S. Navy pilot also continued operations for the Metabolic Tracking (MT) experiment that observes how human tissue samples are impacted by a specific drug compound.

Image above: Sunrise over Australia, seen by EarthCam on ISS, speed: 27'597 Km/h, altitude: 409,77 Km, image captured by Roland Berga (on Earth in Switzerland) from International Space Station (ISS) using ISS-HD Live application with EarthCam's from ISS on April 17, 2018 at 21:08 UTC.

Expedition 55-56 crewmates Drew Feustel and Ricky Arnold checked each other’s eyes today using optical coherence tomography gear inside the Harmony module. Feustel also installed and checked the station’s first updated printer since 2000 before wrapping up his day unloading cargo from the SpaceX Dragon cargo craft. Arnold finally collected water samples and changed out a cartridge as part of preventative maintenance on a U.S. oxygen generator.

Astronaut Norishige Kanai from Japan continued more upkeep work for the Mouse Stress Defense experiment that is exploring the causes of muscle and bone loss in space. The busy flight engineer later assisted his fellow crew members unloading SpaceX cargo before injecting human tissue samples with a drug compound for the MT study.

Related links:

Metabolic Tracking (MT):

SpaceX Dragon:

Expedition 55:

Space Station Research and Technology:

International Space Station (ISS):

Images (mentioned), Text, Credits: NASA/Mark Garcia/ Aerospace/Roland Berga.

Best regards,

Diamonds tell a vanished planet

EPFL logo.

April 17, 2018

EPFL scientists have examined a slice of a meteorite containing diamonds formed under high pressure.

Image above: The fragment in question could be studied. Image Credits: EPFL/Hillary Sanctuary.

The study of EPFL researchers shows that the body of origin was a planetary embryo of a size between that of Mercury and that of Mars. On October 7, 2008, an asteroid a little over four meters in diameter entered the Earth's atmosphere and exploded 37 kilometers above the Nubian Desert in Sudan. During his explosion, he threw multiple fragments on the surface of the desert.

Only fifty fragments, of a size of 1 to 10 centimeters, were collected, for a total mass of 4.5 kilos. It is mainly ureilites, a rare type of stony meteorite that often contains small clusters of nanometer-sized diamonds, said Tuesday the Federal Institute of Technology Lausanne (EPFL) in a statement.

The prevailing view is that these tiny diamonds can form in three ways: shock waves of enormous pressure from high-energy collisions between the original meteorite and other objects in space, a deposition by chemical vapors or the "normal" static pressure inside the original body, as for most diamonds on Earth.

Planet Embryo

EPFL scientists, along with colleagues in France and Germany, studied diamonds with a diameter of 100 microns in some of these meteorites. The analysis showed that the diamonds contained chromite, phosphate and iron-nickel sulphides, which scientists call "inclusions".

It has long been known that they exist in terrestrial diamonds, but they are described for the first time in an extraterrestrial body. The particular composition and morphology of these materials can only be explained if the pressure under which the diamonds were formed was greater than 20 GPa (giga-pascals).

Image above: Artist’s conception of the dust and gas surrounding a newly formed planetary system. Image Credit: NASA.

And this level of internal pressure can be explained only if the body of origin was a planetary "embryo" of a size between those of Mercury and Mars, according to the layer in which the diamonds were formed.

Lost planets

Many models have predicted that these planetary embryos existed during the first million years of our Solar System, and the study provides irrefutable proof of their existence. Many planetary embryos had the size of Mars, like the one that struck the Earth to give birth to the Moon.

According to the authors, "this study provides compelling evidence that the original body of this meteorite was one of those 'lost' great planets destroyed by collisions 4.5 billion years ago." . The discovery is published in Nature Communications.

Related article from EPFL:

For more information about Federal Institute of Technology Lausanne (EPFL), visit:

Images (mentioned), Text, Credits: ATS/ Aerospace/Roland Berga.

Best regards,

lundi 16 avril 2018

Storm hunter in position

ESA - Colombus patch.

April 16, 2018

The Atmosphere-Space Interactions Monitor, also known as the Space Storm Hunter, was installed today outside the European space laboratory Columbus.

Operators in Canada commanded the International Space Station’s 16-m long robotic arm to move the 314-kg facility from a Dragon spacecraft’s cargo hold to its place of operation on Columbus.

Mounted on Columbus

Pointing straight down at Earth, the storm hunter will observe lightning and powerful electrical bursts in the atmosphere that occur above thunderstorms, the so-called transient luminous events. The inner workings of these magnificent forces of nature are still unknown. The International Space Station offers a great vantage point to gather information about such events – it circles 400 km above Earth and covers the areas where most thunderstorms appear.

Setting up

The first part to getting data is checking the communication channels. The storm hunter will send data over the International Space Station network beamed via communication satellites to a ground station in White Sands, USA, then on to the Space Station mission control in Houston, under the Atlantic ocean to the Columbus Control Centre near Munich, Germany, and finally to the Belgian user operations and support centre in Brussels.

The observatory has two suites of instruments to capture optical images in infrared and ultraviolet, and x-ray and gamma-ray detectors. Sensors will measure light levels to determine if an image should be taken and the data sent back to Earth.

Setting the levels will be a matter of trial and error – setting the trigger too low will flood the network with images that are of no use, too high and some thunderstorms will not be recorded. The operators will collaborate with scientists at the Technical Institute of Denmark who are eagerly awaiting readings from the observatory, in order to find the best solution.

Visual cameras will pinpoint areas of interest while photomultiplier tubes record the details of the lightning and transient luminous events. Other sensors are included to learn more about terrestrial gamma-ray flashes, for high and low energy x-ray and gamma-ray bursts.

Lightning strikes

Each element of the storm hunter will be activated in turn and tested to ensure they are working as expected. This is expected to take up to six weeks, during which the user control centre will be run continuously.

Anuschka Helderweirt, operations engineer at the Belgian operations centre, says: “We are thrilled to start operating these instruments in space, this is what the hours spent training, developing procedures and preparing for anomalies was for. We are ready to deliver some fascinating new scientific data.”

Related links:

Experiment archive:

International Space Station Benefits for Humanity:

European space laboratory Columbus:

Terma (DK):

ASIM website:

DTU Space:

Images, Video, Text, Credits: ESA/D. Ducros/NASA.

Best regards,